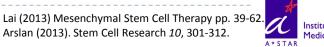
Natural and Synthetic lipid membrane nanovesicles to repair and regenerate skin

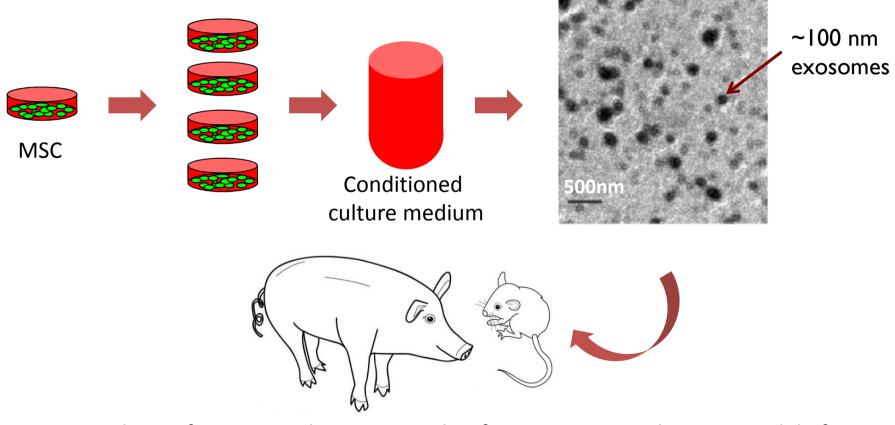
Sai Kiang Lim, PhD

Research Focus of Lab

Nano Lipid membrane vesicles

Natural


- Extracellular Vesicles: microvesicles, exosomes, apoptotic bodies
 - □ Mesenchymal stem cell exosomes
- Synthetic
 - Liposomes (exosome-like)


Introduction

Mesenchymal stem cell exosomes

- Mesenchymal stem cells
 - Most used cell type in cell therapy trials
 - □ 400 registered clinical trials at clinicaltrials.gov
 - □ 3-fold increase in IND submissions to FDA : 2006-2012 (Mendicino et al, 2014. Cell stem cell 14(2):141-145)
 - MOA: paracrine and not differentiation
 - □ "Notably, all corporately sponsored trials in cell therapy for heart disease are currently testing cell types hypothesized to have a paracrine mechanism of action." Proceedings of the California Stem Cell Agency July 22, 2015
 - Extracellular vesicles are the prime paracrine candidates

Exosome as a therapeutic MSC paracrine factor

Reduce infarct size and improve cardiac function in pig and mouse model of AMI

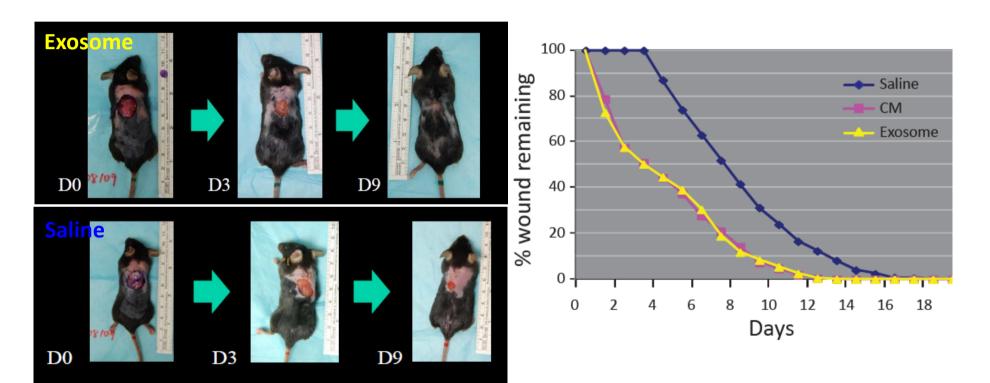
Stem Cell Res 4(3):214–222

Efficacy of MSC exosomes in diseases

EV source	Disease studied	Therapeutic effect			
BM-MSC (human)	Glycerol-induced acute kidney injury (Mouse)	Reduced tubular lesions and enhanced renal function			
ESC-, Fetal-, UC-MSC (human)	Myocardial ischemia/reperfusion injury (Mouse)	Reduced infarct size			
UC-MSC (human)	Hypoxia-induced pulmonary hypertension (Mouse)	Reduced inflammation, pulmonary vascular remodeling and enhanced pulmonary function			
UC-MSC (human)	CCl ₄ -induced liver fibrosis (Mouse)	Inhibited hepatocyte apoptosis, alleviated fibrosis			
BM-MSC (rat)	Middle cerebral artery occlusion (Rat)	Promoted neurite outgrowth of neurons and astrocytes			
BM-MSC (human)	Graft-versus-host disease (Human)	Reduced diarrhea volume, cutaneous and mucosal GVHD severity			
ESC-MSC (human)	CCl _e -induced liver injury (Mouse)	Reduced hepatic necrosis			
UC-MSC (human)	Skin deep second degree burn wound (Rat)	Promoted skin cell proliferation and re-epithelialization			

Yeo et al., in press

Hypothesis for the MOA of MSC exosomes


- Extensive biochemical and biophysical characterization
 - >15 publications in the last 5 years
- Current working hypothesis
 - MSC exosomes mediate the stromal support function of MSC in maintaining the integrity and homeostasis of tissue stromal for optimal cell and tissue biochemistry and function
 - Rationale and evidence for hypothesis:
 - □ Lai et al., (2015). Seminars in Cell & Developmental Biology 40, 82-88.
 - □ Lai et al., (2013). Regenerative Medicine 8 (2), 197-209
 - □ Yeo et al., (2013). Exosomes Microvesicles, 1:7. doi: 10.5772/57460.
 - □ Zhang et al., (2014). Frontiers in Immunology, 5, 518. doi:10.3389/fimmu.2014.00518
 - Tan et al., (2015). Chapter 2 in "Mesenchymal Stem Cell Derived Exosomes.
 - □ Yeo and Lim Book Chapter in "Advances in cell therapy" (WorldScientific) in press

Potential therapeutic applications for skin (1)

<u>Mouse</u>

D

Potential therapeutic applications for skin (2)

Pig

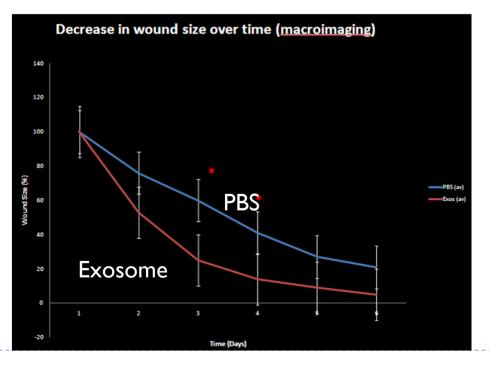
saline

exosome

exosome

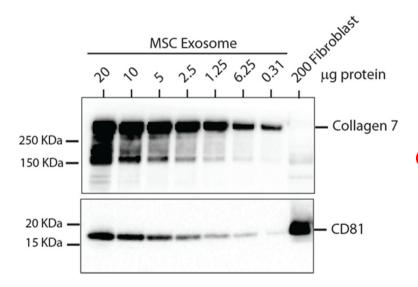
saline

Exosome enhances wound closure over saline, p= 2.4E-06



Potential therapeutic applications for skin (3)

<u>Human</u> (Birgit Lane)



Rationale for use of MSC exosomes in skin wound

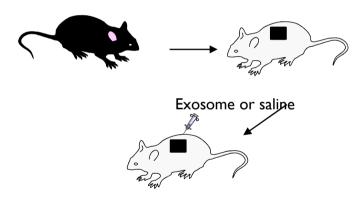
MSC exosomes

 Rich in Extracellular matrix (ECM) proteins, Cell Adhesion Molecules (CAMs), ECM enzymes

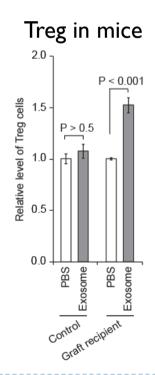
D

	ECM proteins				CAMs		ECM enzymes
	AGRN	FBN1	KRT15	NID1	ALCAM	ITGAV	ADAM9
	ARMS	FBN2	KRT16	VCAN	CD44	ITGB1	ADAM10
	COL1A1	FGA 4%	KRT17	SDC1	CDH13	ITGB4	ADAMTS12
	COL1A2	FGB	KRT18	SDC2	CEACAM8	ITGB5	ENTPD4
	COL2A1	FGG	KRT19	SDC4	CLSTN1		MMP1
	COL3A1	FN1	KRT27	SPARC	CNTN1		MMP1
	COL4A2	KRT1	KRT28	TGFBI	CTNNA1		MMP10
	COL4A3	KRT2	KRT72	THBS1	CTNNB1		MMP2
	COL5A1	KRT3	KRT73	THBS2	CTNND1		MMP2
	COL6A1	KRT4	KRT74	TNC	FAT		MMP3
	COL6A2	KRT5	KRT76	VTN	FAT2		PCOLCE
	COL7A1	KRT6A	KRT77		FAT4		PLAU
	COL12A1	KRT6B	KRT78		ICAM1		PLOD1
	COL14A1	KRT6C	KRT79		ICAM5		PLOD2
	COL18A1	KRT7	KRT80		ITGA11		PLOD3
	ECM1	KRT8	KRT84		ITGA2		SERPINE1
	EFEMP2	KRT9	LAMA3		ITGA3		TIMP1
	FBLN1	KRT10	LAMA4		ITGA4		TIMP2
	FLG2	KRT13	LAMB1		ITGA5		TIMP3
	FBLN1	KRT14	LAMC1		ITGAL		

Potential of Systemic Allogeneic Mesenchymal Stromal Cell Therapy for Children with Recessive Dystrophic Epidermolysis Bullosa


Journal of Investigative Dermatology (2015) 135, 2319-2321; doi:10.1038/jid.2015.158; published online 14 May 2015

- Improved healing, reduced wounding (transient,~6 months)
- Skin biopsies
 - □ No increase in C7
 - \square MOA


Immunomodulatory activity of MSC

Immunomodulatory activity of MSC

- MSC approved for GVHD
- Paracrine mechanism
 - MSC exosomes
 - modulate immune system in GVHD patients (Giebel's lab)

B Zhang, Y Yin, RC Lai, SS Tan, ABH Choo, SK Lim (2014). Mesenchymal stem cell secretes immunologically active exosomes- Stem Cells and Development 23(11):1233-44 Zhang, B., Yin, Y., Lai, R. C., & Lim, S. K. (2014). Immunotherapeutic Potential of Extracellular Vesicles. Frontiers in Immunology, 5, 518. doi:10.3389/fimmu.2014.00518

Future Work

D

- I. Clinical trial: MSC exosomes for wound healing? RDEB?
- 2. Elucidation of MOA:
 - a. Proteomic complementation
 - b. Structural ECM support
 - c. Immune modultory

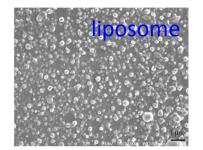
Research Focus of Lab

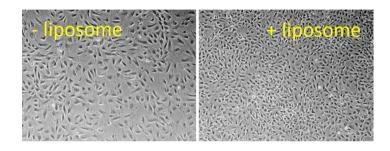
Nano Lipid membrane vesicles

Natural

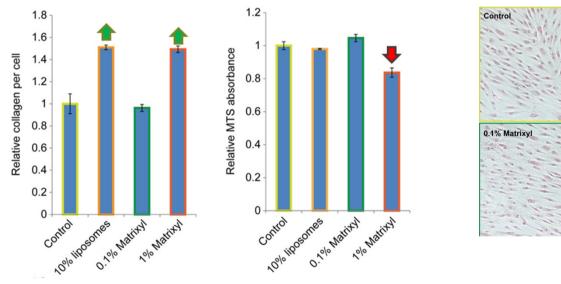
- Extracellular Vesicles: microvesicles, exosomes, apoptotic bodies
 - □ Mesenchymal stem cell exosomes
- Synthetic
 - Liposomes
 - □ Egg lecithin
 - □ Efficient, high through-put and automated closed production system

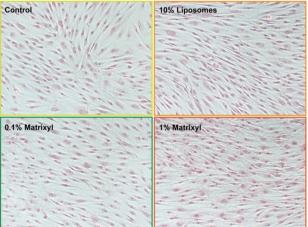
Exosome-like liposomes

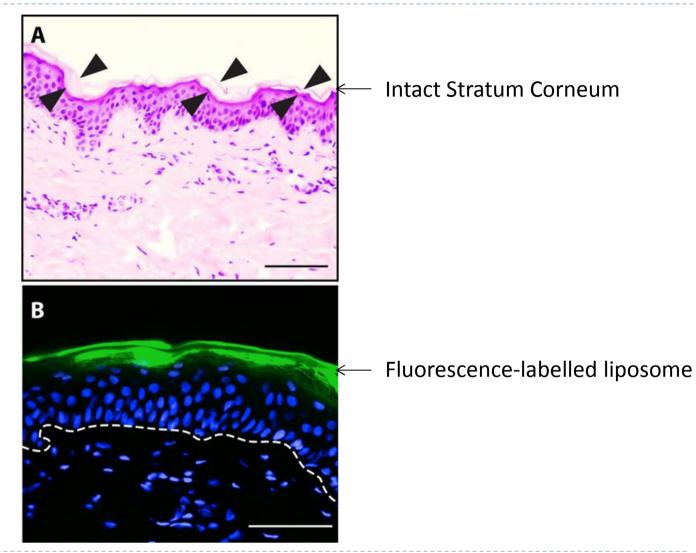

D


Features

- Physiological
 - Lipid composition of a mammalian cell/exosome membrane
 - □ Appropriate ratio of lipid classes
 - Undetectable level of PIs
 - High level of sphingomyelin
 - Safe for cosmetic applications
 - Cosmetic Ingredient Review Expert Panel, International Journal of Toxicology, 20 (suppl 1) 21-45 (2001)

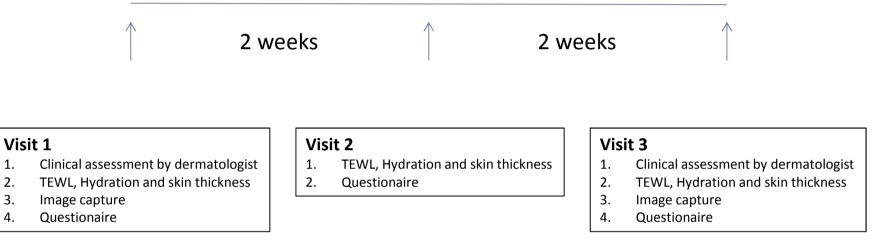



Exosome-like liposomes – nourishing property


MSCs cultured in serum-free medium

Application of liposomes on human skin

Clinical Study: liposomes to reduce skin dryness of menopausal women (Mark Koh, KKH)


Study design

1.

2.

3.

4.

Protocol

- Test leg (randomly assigned by clinical co-ordinator)
 - Lotion twice a day a.
 - No lotion at least one hour before V2 and V3 b.
- Control leg 2.
 - As per participant's normal routine a.

Preliminary results:

Significant increase in skin hydration,

2/3 patients have >0.1 mm increase in dermis thickness

The Relationship Between Wrinkle Depth and Dermal Thickness in the Forehead and Lateral Canthal Region

Kazue Tsukahara, PhD; Yuichi Tamatsu, DDS, PhD; Yasushi Sugawara, MD, PhD; Kazuyuki Shimada, DDS, PhD

ARCH DERMATOL/VOL 147 (NO. 7), JULY 2011 WWW.ARCHDERMATOL.COM

A wrinkle of between 0.25 and 0.62 mm deep is associated with a 0.2 mm decrease in dermal thickness.

Future Work

- Test efficacy in alleviating skin dryness and disease severity for skin diseases e.g. eczema
- Develop liposomes as drug delivery vehicles for topical applications of fat soluble drugs

Contributors

Zhang Bin Lai Ruenn Chai Tan Soon Sim Ronne Yeo Yin Yijun Tan Kok Hian (KKH) (Eugene Sim)

Our collaborators

