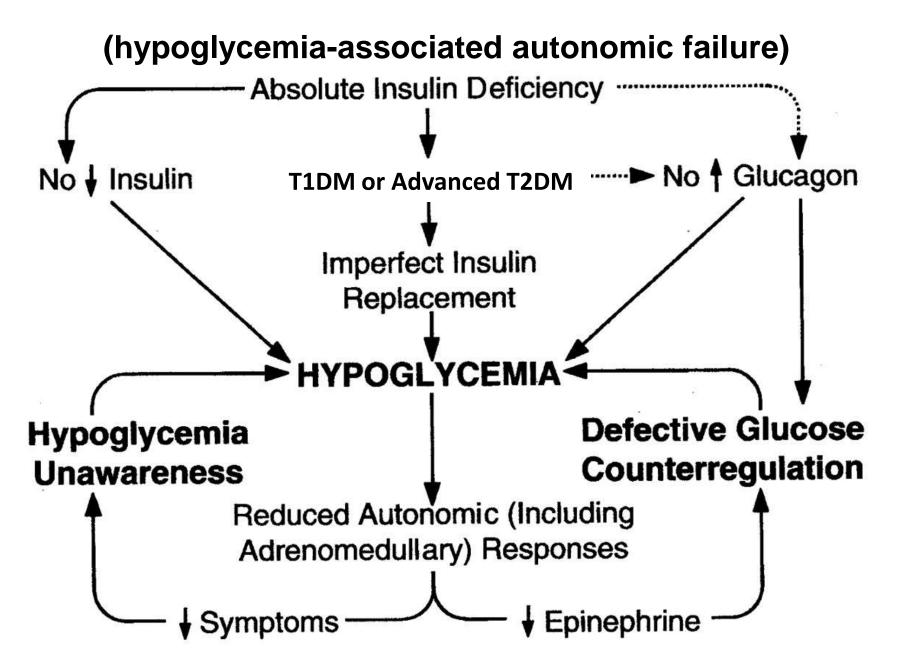
The Complexity of Patients with Diabetes:

Research & Development
Opportunities from the
Perspective of Patient Needs and
Challenges

Dr Daniel Chew
Head and Senior Consultant, Dept of Endocrinology
Director of Clinical Research, CRIO
ACMB Manpower Development, TTSH


- 65 year old Chinese Male
- Strong family history of T2DM
- T2DM since 50 years old
- Hypertension
- Ex-smoker
- PO Glipizide 10mg BD
- PO Metformin 850mg BD
- HbA1c 7.5%, Creatinine 100 umol/L, eGFR 58
- Urine microalbumin +ve, Early DM retinopathy

- 44 Chinese Male
- Married with 2 kids 4 and 1+ years
- T2DM diagnosed 5 years ago
- HbA1c 12.5% when admitted for Nephrotic Syndrome 6 months ago
- Urine Protein > 4g/day, Serum Albumin 24
- Creatinine 110, eGFR >60
- Proliferative retinopathy with maculopathy
- Ischaemic dilated cardiomyopathy, Angiogram(-)
- Father had T2DM and ESRF, IHD

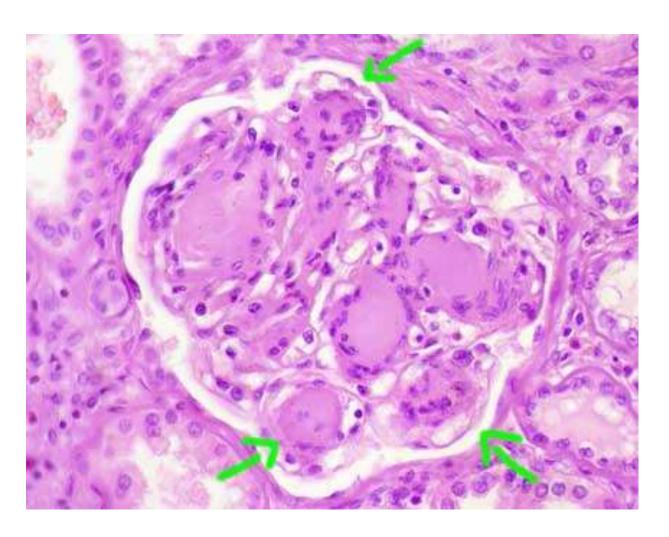
- 38 Chinese Female
- Simple mind, Obesity BMI 33 kg/m²
- T2DM since 23 years old
- Her mother has psychiatric illness
- Sister supervises her care as best she can
- Average HbA1c 11% (Range 5.8 13.0%)
- Normotensive
- No urine albumin, eGFR > 60, Creatinine 50
- Metformin, Sulphonylurea, Basal Insulin

- 36 year old Chinese Male
- Known T1DM since 24 years old
- Chronic Lymphocytic Thyroiditis (aka Hashimoto's)
- Long acting insulin analogue 20 units OM
- Regular insulin 8 units TDS premeals
- HbA1c 8.2% March 2009
- Canoe Instructor / Water Sports

HAAF

Type 1 diabetes	About 40 known (genes in HLA region, INS, PTPN22, and others)	Lifelong insulin		
Type 2 diabetes	About 40 known (TCF7L2, CDKAL1, and others)	Metformin as primary treatment; also sulfonylureas, glitazones, or insulin		
LADA	Genes in HLA region, INS, and PTPN22 (as in type 1 diabetes)	Early recourse to insulin therapy		
GCK-MODY	GCK	Diet modification		
HNF1A MODY	HNF1A	Sulfonylureas (low dose)		
Mitochondrial diabetes	MTTL1	Early recourse to insulin therapy		
Lipodystrophies	LMNA, PPARG, AGPAT2, CAV1, BSCL2, LMNB2, and AKT2	Uncertain; thiazolidinediones for some subtypes		
Neonatal diabetes	KCNJ11, ABCC8	Sulfonylureas (high dose)		
Neonatal diabetes	INS	Insulin		
GCK denotes glucokinas and tRNA transfer RNA.	se, LADA latent autoimmune diabetes in adults, Mo	ODY maturity-onset diabetes of the young,		
and this transfer him.				

Genomics, Type 2 Diabetes, and Obesity N Engl J Med 2010;363:2339-50.

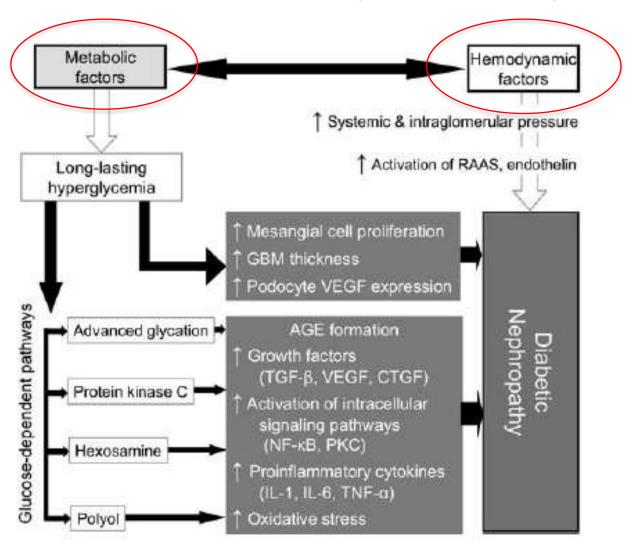

Optimal Treatment

Causal Genes

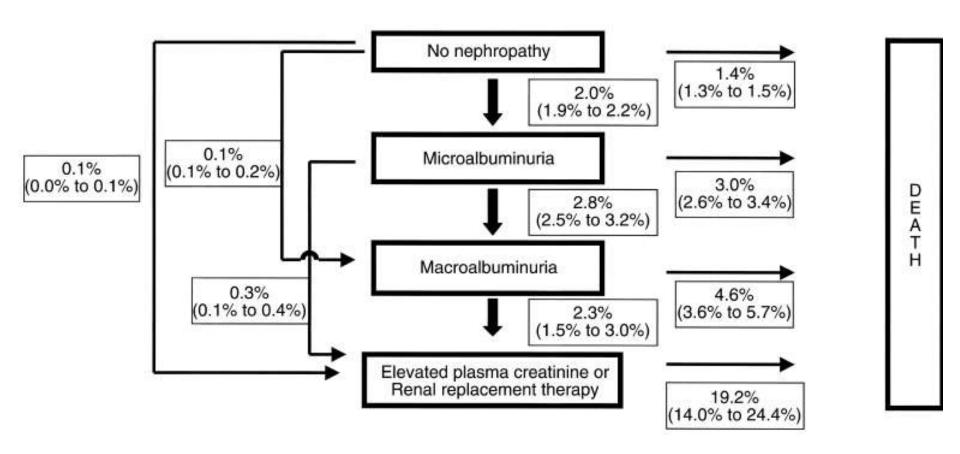
Table 3. Initial Treatments for Various Diabetes Subtypes.*

Diabetes Subtype

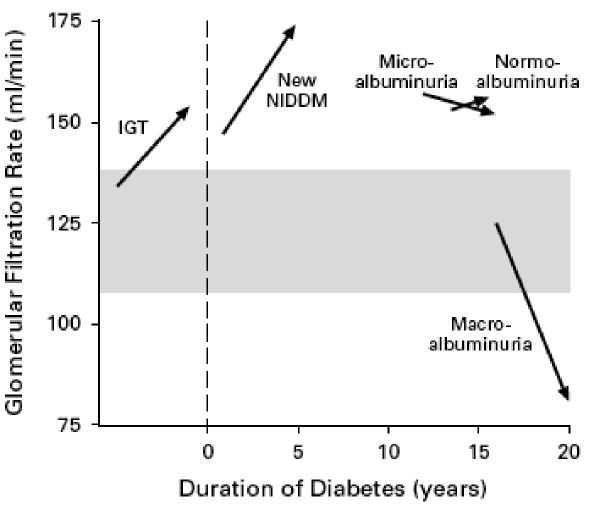
DM Nephropathy


DM Nephropathy

- Diabetic nephropathy is the leading cause of end stage renal disease (ESRD) worldwide
- Glycemic control and Blood pressure and are the two most important factors predicting the progression of diabetic nephropathy
- Genetic predisposition:
 - Pedigree studies show familial aggregation in both T1DM and T2DM
 - Difference prevalence among various ethnic groups
- The likelihood of developing overt proteinuria was 14%, 23% and 46% in patients with none, one or both parents with proteinuria

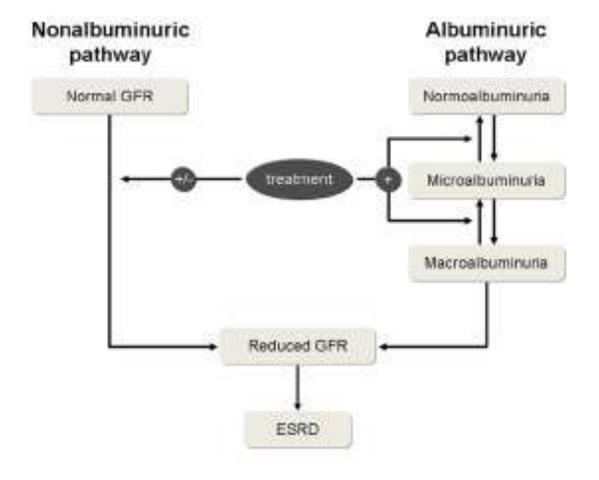

 TABLE 1. Management of diabetic nephropathy by stage of renal function

GFR						
Stage	Description	(ml/min per 1.73 m ² body surface area)	Management recommendations	Drug regimens		
1	Kidney damage with normal or mildly	≥90	A1c goal ~ 7.0% BP goal <130/85	Add ACE/ARB if urine microalbumin ≥30 mg/g		
2	increased GFR Kidney damage with mildly decreased GFR	60-89	LDL goal $<$ 100 mg/dl A1c goal \sim 7.0%	creatinine ACE/ARB recommended for all patients		
	······, ····,		BP goal <130/85 LDL goal <100 mg/dl			
3	Moderately decreased GFR	30–59	A1c goal \sim 7.0%	ACE/ARB recommended for all patients		
			BP goal <130/85	Discontinue metformin, all sulfonylureas except glipizide, nateglinide, α-glucosidase inhibitors, GLP-1 analogs		
			LDL goal <100 mg/dl	Reduce doses of dipeptidyl peptidase-4 inhibitors		
			Refer patients not meeting treatment goals to nephrology for preparation of impending renal failure	Add erythropoietin if Hgb <9 mg/dl		
			Monitor for anemia Monitor for secondary	Add calcitriol when 1,25-dihydroxyvitamin D is low or when PTH >2 ×		
4	Severely decreased GFR	15–29	hyperparathyroidism A1c goal ~ 7.0%	upper limits of normal ACE/ARB recommended for all patients with careful monitoring of serum K		
			BP goal <130/85	Insulin therapy recommended for most patients with diabetes		
			LDL goal <100 mg/dl	Add erythropoietin if Hgb <9 mg/dl		
			Refer to nephrology for preparation of impending renal failure and consideration of shunt placement Monitor for anemia Monitor for	Add calcitriol when 1,25-dihydroxyvitamin D is low or when PTH >2 × upper limits of normal		
_			secondary hyperparathyroidism			
5	End-stage renal failure	<15 or dialysis	Dialysis or kidney transplantation			


Incomplete Understanding of Pathogenesis

Development and progression of nephropathy in type 2 diabetes: The United Kingdom Prospective Diabetes Study (UKPDS 64)

Clinical Course



Only approx 30% of patients with microalbuminuria progress to overt DN after 10 years

Renal function decline occur at a rate of 1 ml/min/month in patients with macroalbuminuria

Nelson, RG, et.al. Development and progression of renal disease in Pima Indians with non insulin dependent diabetes mellitus. N Eng J Med 1996; 355: 1636-1642

Diabetic Nephropathy with Normoalbuminuria

Pugliese, G. Updating the Natural History of Diabetic Nephropathy. Acta Diabetol (2014): 51: 905-915

Diabetic Nephropathy with Normoalbuminuria

Table 2 Longitudinal and cross-sectional studies on the prevalence of microalbuminuric renal impairment in patients with type 1 or 2 diabetes

Study, authors		Patients with diabetes, n	Follow-up, years	Patients with renal impairment*		
(reference)				Total, n (% of cases)	Nonalbuminuric, n (% of total)	With neither albuminuria nor retinopathy, n (% of total)
Longitudinal studies						
Molitch et al. [37]	1	1,439	19	89 (6.2)	21 (23.6)	ND
Retnakaran et al. [36]	2	4,006	8	1,132 (28.3)	575 (50.8)	
Cross-sectional studies						
Kramer et al. [33]	2	1,197	NA	171 (14.3)	60 (35.1)	51 (29.8)
MacIsaac et al. [34]	2	301	NA	109 (36.2)	43 (39.4)	32 (29.4)
Dwyer et al. [35]	2	11,573	NA	2,586 (22.3)	1,038 (40.1)	ND
Thomas et al. [38]	2	3,983	NA	920 (23.1)	506 (55.0)	ND
Penno et al. [39]	2	15,773	NA	2,959 (18.8)	1,673 (56.6)	1,280 (43.3)
Rodriguez-Poncelas et al. [40]	2	1,145	NA	206 (18.0)	143 (69.4)	ND
Mottl et al. [41]	2	2,798	NA	575 (20.6)	298 (51.8)	ND
Ninomiya et al. [42]	2	10,640	NA	2,033 (19.1)	1,252 (61.6)	ND
Drury et al. [43]	2	9,795	NA	519 (5.3)	307 (59.2)	ND

Need for Alternative Biomarkers in DN

Currie G et al. Biomarkers in diabetic nephropathy

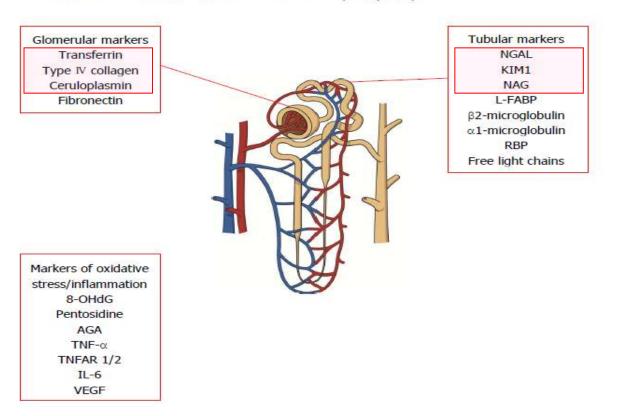


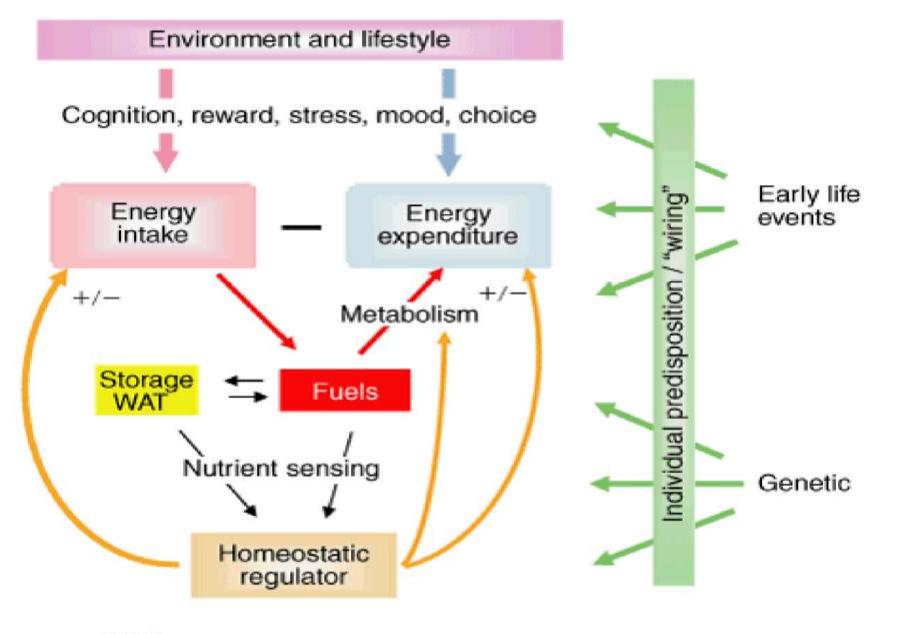
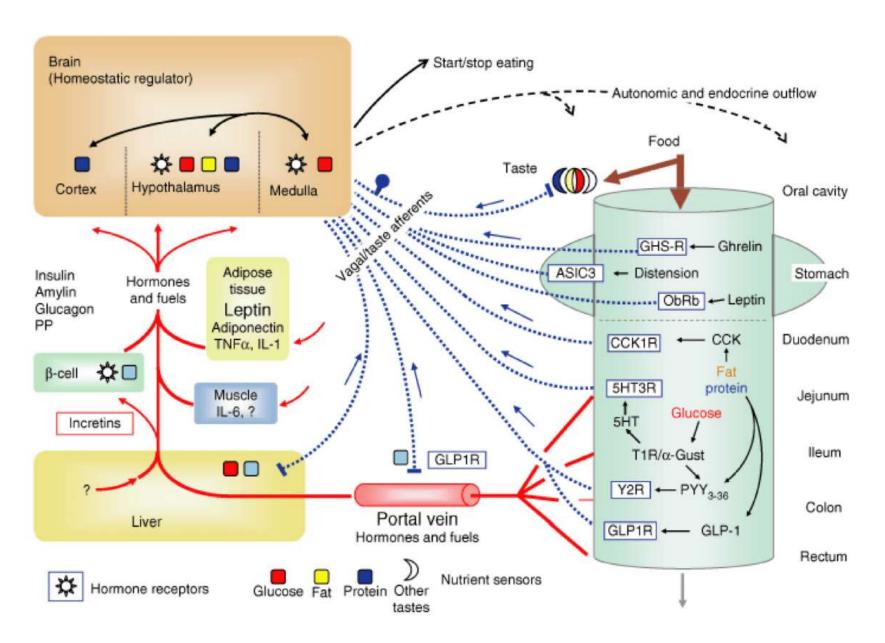
Figure 1 Biomarkers for diabetic nephropathy. NGAL: Neutrophil gelatinase associated lipocalin; KIM1: Kidney injury molecule 1; NAG: N-acetyl-b-d-glucosaminidase; L-FABP: Liver-type fatty acid binding protein; RBP: Retinol binding protein; 8-OHdG: 8-oxo-7,8-dihydro-2'-deoxyguanosine; AGA: α-1-acid glycoprotein; TNFAR 1/2: Tumor necrosis factors-α receptors 1 and 2; IL-6: Interleukin-6; VEGF: Vascular endothelial growth factor.

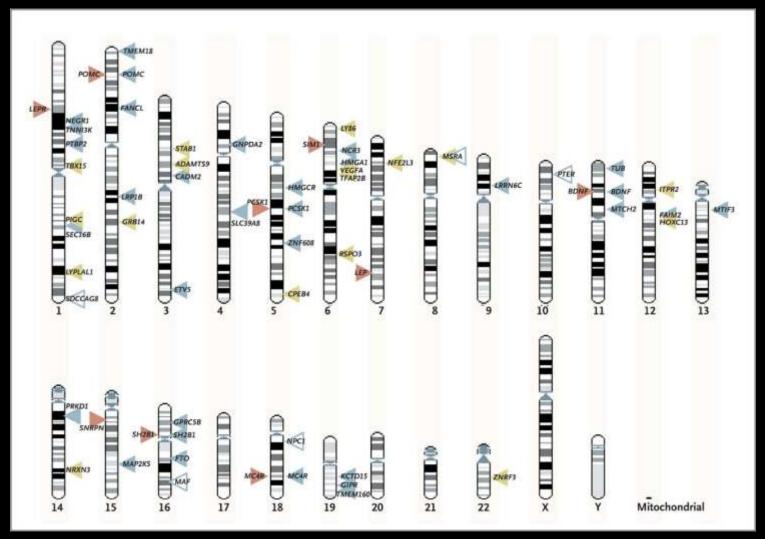
Proteomic eg Panels of Urine Markers: CKD273 urine peptides – 85% sensitive 100% specific

Metabolomic Genomic Approaches

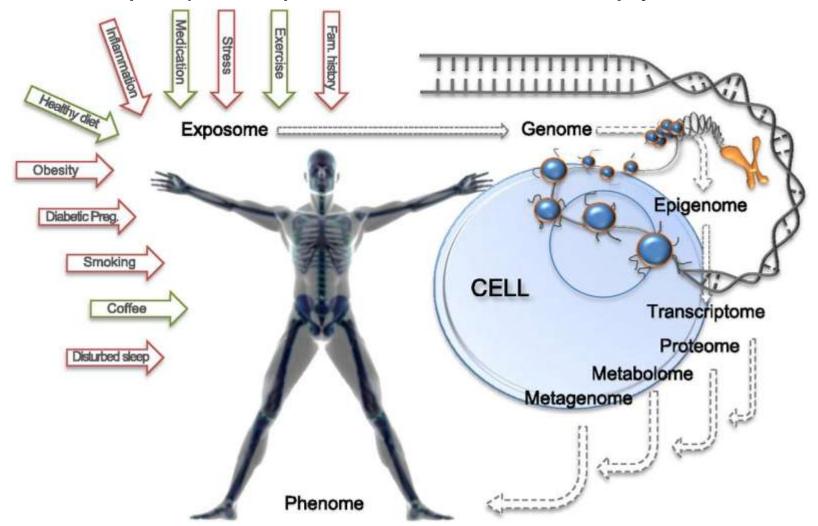
Table 1 Major consortia addressing the genetic basis of diabetes complications and associated traits						
Acronym	Full name	Trait of Interest	URL			
CARDIoGRAM <i>plu</i> sC4D ¹³³	So farSearch for specif unrewarding	ic variants r	elatively	ogramplusc4d.org/		
CARe consortium ⁷⁷	1) Phenotype imprecision: Albumin/ESRD, ? Mechanistic heterogenecity			.nih.gov/research/ ics-genomics/care		
DCCT/EDIC ¹³⁴	2) Inadequate sample size	iddk.nih.gov/dm/pubs/				
DIAGRAM ¹⁰⁹	DIAbetes Genetics Replication And Meta-analysis consortium	Type 2 diabetes	http://diagram-	consortium.org/about.html		
FIND	Family Investigation of Nephropathy and Diabetes	Diabetic kidney disease	https://www.niddkrepository.org/studies/ find			
GENIE ⁶⁰	GEnetics of Nephropathy —an International Effort	Diabetic kidney disease	http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000389.v1.p1			
GIANT ¹³⁵	The Genetic Investigation of Anthropometric Traits consortium	Anthropometric traits	http://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium			
GoKIND ¹³⁶	Genetics of Kidneys in Diabetes study	Diabetic kidney disease	https://www.niddkrepository.org/studies/ gokind/			
JDRF-DNCRI	Diabetes Research Foundation– Diabetic Nephropathy Collaborative Research Initiative	Diabetic kidney disease	http://jdrf.org/press-releases/jdrf-forms- largest-ever-international-effort-to-research- genetics-of-diabetic-kidney-disease/			
MAGIC ¹³⁷	The Meta-Analyses of Glucose and Insulin-related traits consortium	Glycaemic traits	http://www.magicinvestigators.org/			
SUMMIT ⁷⁶	SUrrogate markers for Micro- and Macro-vascular hard endpoints for Innovative diabetes Tools	Complications of diabetes	http://www.imi-	summit.eu/		

What causes weight gain and obesity?


Figure 1.

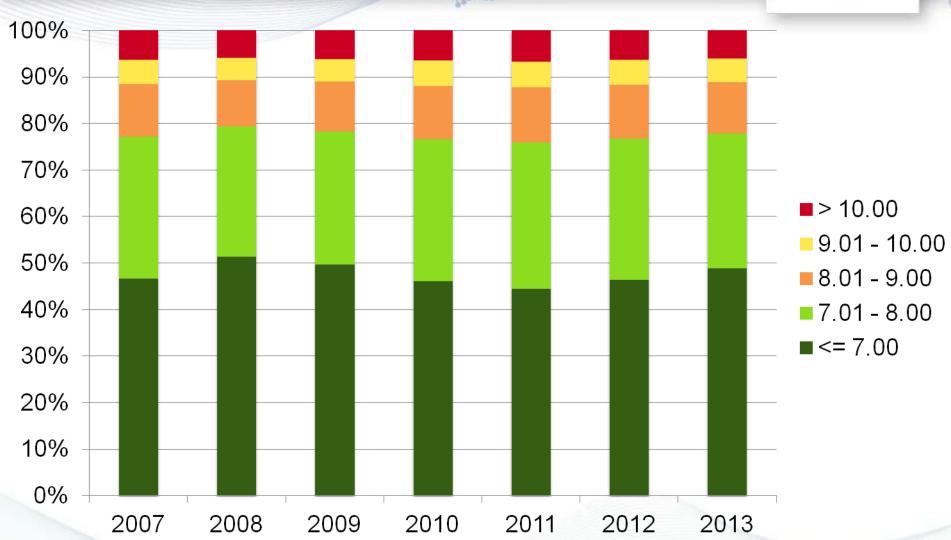
Major mechanisms and factors determining energy balance.


Obesity (Silver Spring). 2008 December; 16(Suppl 3): S11–S22.

Genomic Locations of Proven Signals of Body-Mass Index (BMI), Obesity, and Related Phenotypes

McCarthy MI. N Engl J Med 2010;363:2339-2350

The future of research on stratified diabetes medicine: a systems epidemiology approach to the discovery of interactions between the exposome (all nongenetic elements to which we are exposed) and the quantifiable elements of the human physiome.



Paul W. Franks et al. Dia Care 2013;36:1413-1421

No. of Diabetes Base Patients with HbA1c Measured

Source: NHG CDMR 2007 – 2013 (Exclusion criteria IMH)

[23]

young women (aged diabetes was ninefold women without diabe Inpatient Audit 2011 inpatients have diabe and prescribing, iatro glycaemic control, a ulceration common The Atlas of Variation ations in outcomes for England, unlike the Ur pean countries, has fa rates, and major amp between primary care The true cost of di land is unknown. Es (€1.65bn; S2bn) (Der than £3.9kn (NAO) e economics analysis s

Danie Chimtof

EDITORIALS

Editorials are usually commissioned. We are, however, happy to consider and peer review unsolicite See http://resources.bmj.com/bmj/authors/types-of-article/editorials for more details

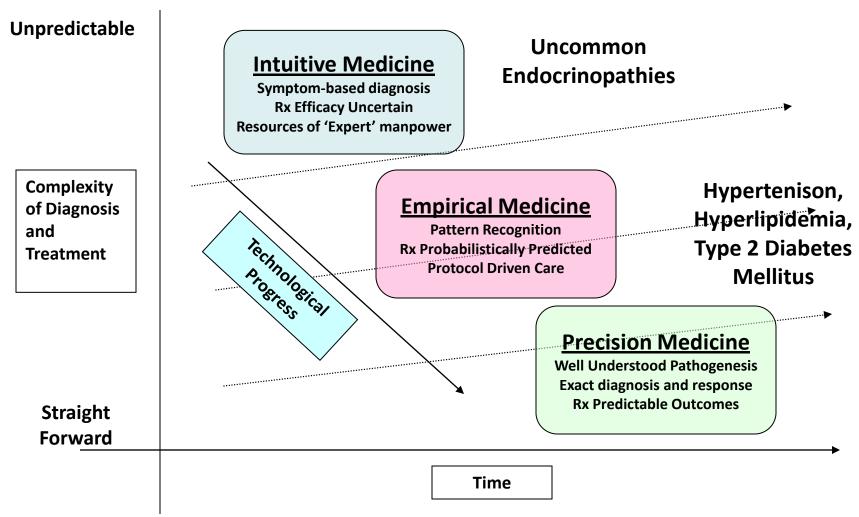
bmj.com For all the latest on diabetes visit the BMJ diabetes portal at http://bit.ly/SuZp5B

The crisis in diabetes care in England

Failings identified by recent reports must be tackled urgently

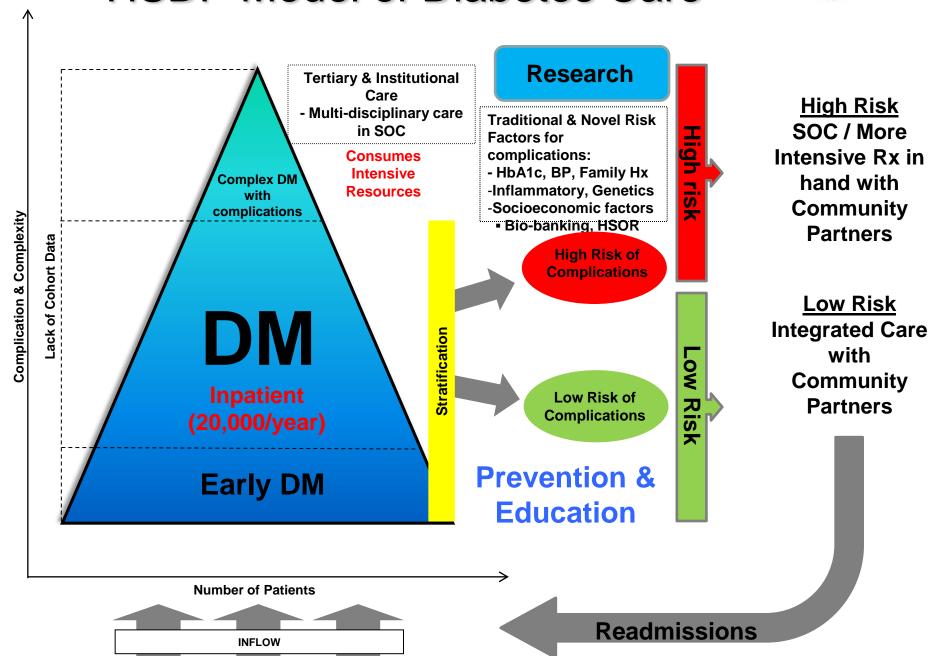
Gerry Rayman consultant physician in diabetes and endocrinology, Diabetes Centre, Ipswich Hospital NHS Trust, Ipswich IP4 5PD, UK gerry.rayman@ipswichhospital.nhs.uk

Anne Kilvert consultant physician in diabetes and endocrinology, Diabetes Centre, Northampton General Hospital NHS Trust, Northampton, UK


In 2001 the National Service Framework for Diabetes set standards for diabetes care in England, with a delivery strategy designed to achieve a world class diabetes service by 2013. However, a series of recent reports from various sources show just how far we are from delivering the standards by the 2013 deadline. A "state of the nation" report from Diabetes UK declares that diabetes care is "in a state of crisis," and a damning National Audit Office (NAO) report accuses the Department of Health of failing to hold NHS com-

BIM | 1 SEPTEMBER 2012 | 1

5


Diabetes – Personalised Medicine

Innovators Prescription - Clayton M Christensen

HSDP Model of Diabetes Care

ORIGINAL ARTICLE

Trends in Death Rates Among U.S. Adults With and Without Diabetes Between 1997 and 2006

Findings from the National Health Interview Survey

EDWARD W. GREGG, PHD1 YILING J. CHENG, PHD SHARON SAYDAH, PHD1 CATHERINE COWIE, PHD2

SANFORD GARFIELD, PHD² LINDA GEISS, MA1 LAWRENCE BARKER, PHD

OBJECTIVE—To determine whether all-cause and cardiovascular disease (CVD) death rates declined between 1997 and 2006, a period of continued advances in treatment approaches and risk factor control, among U.S. adults with and without diabetes.

RESEARCH DESIGN AND METHODS—We compared 3-year death rates of four consecutive nationally representative samples (1997-1998, 1999-2000, 2001-2002, and 2003-2004) of U.S. adults aged 18 years and older using data from the National Health Interview Surveys linked to National Death Index.

RESULTS—Among diabetic adults, the CVD death rate declined by 40% (95% CI 23-54) and all-cause mortality declined by 23% (10-35) between the earliest and latest samples. There was no difference in the rates of decline in mortality between diabetic men and women. The excess CVD mortality rate associated with diabetes (i.e., compared with nondiabetic adults) decreased by 60% (from 5.8 to 2.3 CVD deaths per 1,000) while the excess all-cause mortality rate declined by 44% (from 10.8 to 6.1 deaths per 1,000).

CONCLUSIONS—Death rates among both U.S., men and women with diabetes declined substantially between 1997 and 2006, reducing the absolute difference between adults with and without diabetes. These encouraging findings, however, suggest that diabetes prevalence is likely to rise in the future if diabetes incidence is not curtailed.

the U.S. diabetic population since the 1990s, and the intervening years have been a period of continued advances in treatment approaches and risk factor levels. Newly available mortality follow-up data linked to the National Health Interview Survey (NHIS) provide a unique opportunity to determine whether CVD and allcause mortality has improved among the U.S. population during recent decades as well as whether the excess mortality associated with diabetes has declined (11.12).

RESEARCH DESIGN AND

METHODS—The NHIS is an ongoing survey of the health status, health care access, and behaviors of the U.S. civilian noninstitutionalized population conducted by the National Center for Health Statistics (NCHS) (11). The NHIS uses multistage probability sampling to select approximately 41,000 households and 107,000 individuals each year. The annual response rate of NHIS between 1997 and 2004 ranged from 87 to 92%. Here, we used

